Detecting Deceptive Speech: Requirements, Resources and Evaluation

Julia Hirschberg Columbia University

> LREC 2008 29 May 2008

Collaborators

- Stefan Benus, Jason Brenner, Robin Cautin, Frank Enos, Sarah Friedman, Sarah Gilman, Cynthia Girand, Martin Graciarena, Andreas Kathol, Laura Michaelis, Bryan Pellom, Liz Shriberg, Andreas Stolcke
- Columbia University, SRI/ICSI, University of Colorado

- Ordinary people tell an average of 2 lies per day
 - Your hair looks great.
 - I'd love to go but my parents are in town.
 - I'm sorry I missed your talk but my alarm clock didn't go off.
- Even trained professionals are very poor at detecting deception
- In many cultures 'white lies' are *more* acceptable than the truth
 - Likelihood of being caught is low
 - Rewards also low but outweigh consequences of being caught
- But what about more 'serious' lies? Are they easier to detect?

What is Deception?

- Deliberate choice to mislead
 - Without prior notification
 - To gain some *advantage* or to avoid some *penalty*
- Deception is Not:
 - Self-deception, delusion, pathological behavior
 - Theater
 - Falsehoods due to ignorance/error

Who Studies Deception?

- Students of human behavior especially psychologists
- Law enforcement personnel
- Corporate security officers
- Social services workers
- Mental health professionals

Is it Easy to Deceive?

- *No*...
 - Deceivers' cognitive load is increased because...
 - They must keep story straight
 - Remember what they've said *and* what they haven't said
 - Deceivers' fear of detection is increased if...
 - Target believed to be hard to fool
 - Target believed to be suspicious
 - Stakes are high: serious rewards and/or punishments
 - Hard to control indicators of deception

Where do We Look for Signs of Deception?

- Body posture and gestures (Burgoon et al '94)
 - Complete shifts in posture, touching one's face,...
- Microexpressions (Ekman '76, Frank '03)
 - Fleeting traces of fear, elation,...
- Biometric factors (Horvath '73)
 - Increased blood pressure, perspiration, respiration...
- Variation in *what* is said and *how* (Adams '96, Pennebaker et al '01, Streeter et al '77)
 - Contractions, lack of pronominalization, disfluencies, slower response, mumbled words, increased or decreased pitch range, less coherent,...

Potential Spoken Cues to Deception (DePaulo et al. '03)

- Liars less forthcoming?
 - Talking time
 - - Details
 - + Presses lips
- Liars less compelling?
 - - Plausibility
 - - Logical Structure
 - - Discrepant, ambivalent
 - - Verbal, vocal involvement
 - - Illustrators
 - - Verbal, vocal immediacy
 - + Verbal, vocal uncertainty
 - + Chin raise
 - + Word, phrase repetitions

- Liars less positive, pleasant?
 - - Cooperative
 - + Negative, complaining
 - - Facial pleasantness
- Liars more tense?
 - + Nervous, tense overall
 - + Vocal tension
 - + F0
 - + Pupil dilation
 - + Fidgeting
- Fewer ordinary imperfections?
 - - Spontaneous corrections
 - - Admitted lack of memory
 - + Peripheral details

Current Approaches to Deception Detection

- Training Humans
 - John Reid & Associates
 - Behavioral Analysis: Interview and Interrogation
- `Automatic' methods
 - Polygraph
 - Voice Stress Analysis
 - Microtremors 8-12Hz
 - Nemesysco and the Love Detector
 - *No objective evidence that any of these work*

Exploring Corpus-Based Methods for Deception Detection

- Goal: Identify a set of acoustic, prosodic, and lexical features that distinguish between deceptive and non-deceptive speech
 - As well or better than human judges
 - Using automatic feature-extraction
 - Using Machine Learning techniques to identify bestperforming features and create automatic predictors

Major Obstacles

- Corpus-based approaches require large amounts of training data difficult to obtain for deception
 - Differences between real world and laboratory lies
 - Motivation and potential consequences
 - Recording conditions
 - Identifying ground truth
- Ethical issues
 - Privacy
 - Subject rights and Institutional Review Boards

Our Approach

- Record a new corpus of deceptive/non-deceptive speech and transcribe it
- Use automatic speech recognition (ASR) technology to perform forced alignment on transcripts
- Extract acoustic, prosodic, and lexical features based on previous literature and our work in emotional speech and speaker id
- Use statistical Machine Learning techniques to train models to distinguish deceptive from non-deceptive speech
 - Rule induction (Ripper), CART trees, SVMs

Columbia/SRI/Colorado Deception Corpus (CSC)

- Deceptive and non-deceptive speech
 - Within subject (32 adult native speakers)
 - 25-50m interviews
- Design:
 - Subjects told goal was to find "people similar to the '25 top entrepreneurs of America"
 - Given tests in 6 categories (e.g. knowledge of food and wine, survival skills, NYC geography, civics, music), e.g.
 - "What should you do if you are bitten by a poisonous snake out in the wilderness?"
 - "Sing Casta Diva."
 - "What are the 3 branches of government?"

- Questions manipulated so scores always differed from a (fake) entrepreneur target in 4/6 categories
- Subjects then told real goal was to compare those who actually possess knowledge and ability vs. those who can "talk a good game"
- Subjects given another chance at \$100 lottery if they could convince an interviewer they match target completely
- Recorded interviews
 - Interviewer asks about overall performance on each test with follow-up questions (e.g. "How did you do on the survival skills test?")
 - Subjects also indicate whether each statement T or F by pressing pedals hidden from interviewer

The Data

- 15.2 hrs. of interviews; 7 hrs subject speech
- Lexically transcribed & automatically aligned
- Truth conditions aligned with transcripts: Global / Local
- Segmentations (Local Truth/Local Lie):
 - Words (31,200/47,188)
 - Slash units (5709/3782)
 - Prosodic phrases (11,612/7108)
 - Turns (2230/1573)
- 250+ features
 - Acoustic/prosodic features extracted from ASR transcripts
 - Lexical and subject-dependent features extracted from orthographic transcripts

Limitations

- Samples (segments) not independent
- Pedal may introduce additional cognitive load
 - Equally for truth and lie
 - Only one subject reported any difficulty
- Stakes not the highest
 - No fear of punishment
 - Self-presentation and financial reward

Acoustic/Prosodic Features

- Duration features
 - Phone / Vowel / Syllable Durations
 - Normalized by Phone/Vowel Means, Speaker
- Speaking rate features (vowels/time)
- Pause features (cf Benus et al '06)
 - Speech to pause ratio, number of long pauses
 - Maximum pause length
- Energy features (RMS energy)
- Pitch features
 - Pitch stylization (Sonmez et al. '98)
 - Model of F0 to estimate speaker range
 - Pitch ranges, slopes, locations of interest
- Spectral tilt features

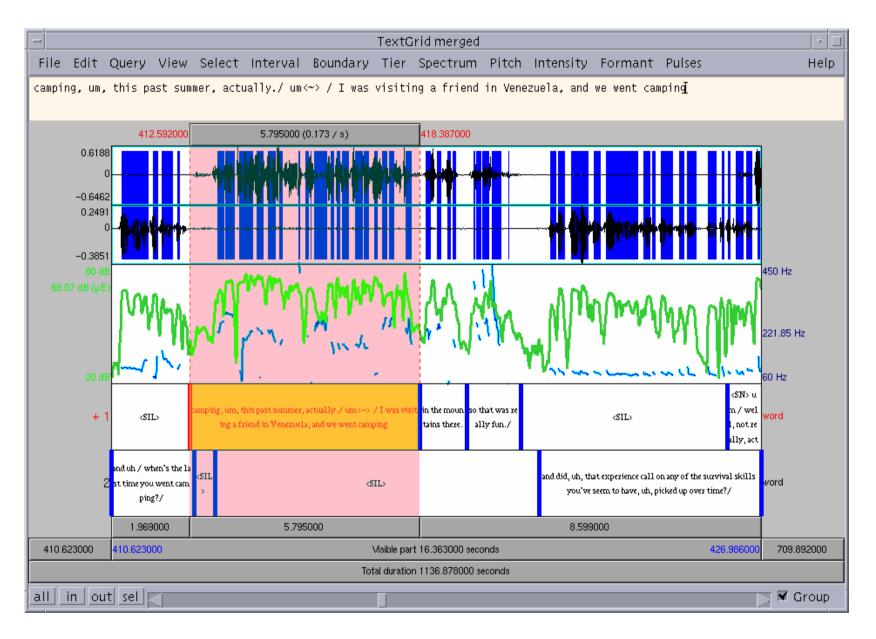
Lexical Features

- Presence and # of filled pauses
- Is this a question? A question following a question
- Presence of pronouns (by person, case and number)
- A specific denial?
- Presence and # of cue phrases
- Presence of self repairs
- Presence of contractions
- Presence of positive/negative emotion words
- Verb tense
- Presence of 'yes', 'no', 'not', negative contractions
- Presence of 'absolutely', 'really'

- Presence of hedges
- Complexity: syls/words
- Number of repeated words
- Punctuation type
- Length of unit (in sec and words)
- # words/unit length
- # of laughs
- # of audible breaths
- # of other speaker noise
- # of mispronounced words
- # of unintelligible words

Subject-Dependent Features: Calibrating Truthful Behavior

- % units with cue phrases
- % units with filled pauses
- % units with laughter
- Ratio lies with filled pauses/truths with filled pauses
- Ratio lies with cue phrases/truths with filled pauses
- Ratio lies with laughter / truths with laughter
- Gender



CSC Corpus: Objective Evalution

- Classification via Ripper rule induction, randomized 5-fold xval)
 - Slash Units / Local Lies Baseline 60.2%
 - Lexical & acoustic: 62.8 %; + subject dependent: 66.4%
 - Intonational Phrases / Local Lies Baseline 59.9%
 - Lexical & acoustic 61.1%; + subject dependent: 67.1%
- Other correlations
 - Positive emotion words \rightarrow deception (LIWC)
 - Pleasantness \rightarrow deception (DAL)
 - Filled pauses \rightarrow truth
 - Some pitch correlations varies with subject

Evaluation: Human Deception Detection

- Most people very poor at detecting deception
 - ~50% accuracy (Ekman & O'Sullivan '91, Aamodt '06)
 - People use unreliable cues, even with training

A Meta-Study of Human Deception Detection (Aamodt & Mitchell 2004)

Group	#Studies	#Subjects	Accuracy %
Criminals	1	52	65.40
Secret service	1	34	64.12
Psychologists	4	508	61.56
Judges	2	194	59.01
Cops	8	511	55.16
Federal officers	4	341	54.54
Students	122	8,876	54.20
Detectives	5	341	51.16
Parole officers	1	32	40.42

Evaluating Automatic Methods by Comparing to Human Performance

- Deception detection on the CSC Corpus
- 32 Judges
 - Each judge rated 2 interviews
 - Received 'training' on one subject.
- Pre- and post-test questionnaires
- Personality Inventory

TRUTH	LIE.						By Judge
Lie	Chance			Std.			58.2% Acc.
Category	Baseline	$Mean^a$	Median	Dev.	Min.	Max.	
Local	63.87 ^b	58.23	57.42	7.51	40.64	71.48	
Global	63.64 c	47.76	50.00	14.82	16.67	75.00	

Table 1: Judges' aggregate performance classifying TRUTH / LIE.

^aEach judge's score is his or her average over two interviews; as percentages.

^bGuessing **TRUTH** each time.

^cGuessing LIE each time

By Interviewee	Lie			Std.		
58.2% Acc.	Type	\mathbf{Mean}^a	Median	Dev.	Min.	Max.
	Local	58.23	58.58	9.44	35.86	87.79
	Global	44.83	45.58	17.40	10.00	81.67

Table 1: Aggregate performance by interviewee.

 $^a\mathrm{Each}$ interviewee's score is the average over two judges; as percentages.

What Makes Some People Better?

- Costa & McCrae (1992) NEO-FFI Personality Measures
 - **Extroversion** (Surgency). Includes traits such as talkative, energetic, and assertive.
 - Agreeableness. Includes traits like sympathetic, kind, and affectionate.
 - **Conscientiousness.** Tendency to be organized, thorough, and planful.
 - **Neuroticism** (reversed as Emotional Stability). Characterized by traits like tense, moody, and anxious.
 - Openness to Experience (aka Intellect or Intellect/Imagination). Includes having wide interests, and being imaginative and insightful.

Neuroticism, Openness & Agreeableness Correlate with Judge's Performance

On Judging Global lies.

Table 1: Correlations between personality factors and judge performance at labeling global lies.

Factor	Measure	Pearson's corr. coef.	p-value
Neuroticism	Proportion of segments judged LIE	-0.44	0.012
Openness Agreeableness	Accuracy	$0.51 \\ 0.41$	$0.003 \\ 0.021$
Neuroticism Agreeableness	F-measure for TRUTH	0.37 0.41	$0.035 \\ 0.019$
Openness	F-measure for LIE	0.52	0.003

Other Useful Findings

- *No* effect for training
- Judges' post-test confidence did *not* correlate with pre-test confidence
- Judges who claimed experience had significantly higher pre-test confidence

- But *not* higher accuracy

- Many subjects reported using disfluencies as cues to deception
 - But in this corpus, disfluencies correlate with *truth* (Benus et al. '06)

Future of Deception Research

- Need corpora that
 - Are collected in 'real' conditions
 - Provide multimodal data for corpus analysis
 - Speech and language
 - Biometric features
 - Visual information
 - Are reliably labeled for ground truth
 - Support research on individual differences in deception behavior
 - Personality data...
 - Support the study of cultural differences in deception

THANK YOU!

